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Abstract
A critical aspect of evolution is the layer of developmental physiology that operates between the genotype and the anatomi-
cal phenotype. While much work has addressed the evolution of developmental mechanisms and the evolvability of specific 
genetic architectures with emergent complexity, one aspect has not been sufficiently explored: the implications of morpho-
genetic problem-solving competencies for the evolutionary process itself. The cells that evolution works with are not passive 
components: rather, they have numerous capabilities for behavior because they derive from ancestral unicellular organisms 
with rich repertoires. In multicellular organisms, these capabilities must be tamed, and can be exploited, by the evolution-
ary process. Specifically, biological structures have a multiscale competency architecture where cells, tissues, and organs 
exhibit regulative plasticity—the ability to adjust to perturbations such as external injury or internal modifications and still 
accomplish specific adaptive tasks across metabolic, transcriptional, physiological, and anatomical problem spaces. Here, I 
review examples illustrating how physiological circuits guiding cellular collective behavior impart computational properties 
to the agential material that serves as substrate for the evolutionary process. I then explore the ways in which the collective 
intelligence of cells during morphogenesis affect evolution, providing a new perspective on the evolutionary search process. 
This key feature of the physiological software of life helps explain the remarkable speed and robustness of biological evolu-
tion, and sheds new light on the relationship between genomes and functional anatomical phenotypes.
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Introduction

The basic workhorse of evolutionary theory is the cycle 
between the genotype (the target of mutations) and the phe-
notype (that which selection acts upon). While many models 
and analyses focus on these key elements, another is often 
neglected: the physiological processes that underlie morpho-
genesis. This is the control layer that sits between the genomi-
cally specified cellular hardware (proteins) and the form and 
function that selection sees: anatomy and behavior (Fig. 1). In 
effect, the behavior of cellular collectives in morphogenesis 
is the software of the system—the functional outcomes of the 

molecular machines encoded by genomic information [1]. This 
is relevant not only for embryogenesis, which converts com-
pressed genomic information into a rich emergent set of large-
scale structures, but also for regeneration, metamorphosis, 
remodeling, and other processes which establish and modify 
growth and form. Much work has addressed the evolution of 
developmental mechanisms, the evolvability of specific archi-
tectures, and the emergent complexity of epigenesis [2–6]. 
Moreover, recent work has begun to emphasize the active, 
cybernetic, problem-solving capacities of this process beyond 
feedforward emergence [7–11] and explore ways in which evo-
lution increases the functional intelligence of cellular collec-
tives [12–14]. Here, I focus on the complementary side of the 
evolution–intelligence feedback loop. This is fundamentally 
distinct from earlier efforts in the adaptationist/selectionist 
paradigms, and emphasizes problem-solving, unconventional 
embodied agency, and creativity that are specifically not due 
to adaptation. I first overview the data that illustrate the func-
tional competencies of morphogenesis, casting multicellular 
growth and form as the behavior of a collective intelligence. I 
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Fig. 1  Multiscale architecture of evolution and morphogenesis. A 
Biological systems exhibit complexity at every scale of organization, 
from molecular networks to whole colonies of organisms. Crucially, 
these are not just structural levels, but functional: each level’s com-
ponents are problem-solving agents which navigate physiological, 
transcriptional, anatomical, behavioral, and other spaces. B Many 
organisms go through a bottleneck that forces a compression of form 
and function into a generative encoding which does not specify the 
final structure, but rather specifies a process which creates that form. 
This is used in machine learning as the “autoencoder” architecture 
(top sub-panel), which compresses data into a compact representa-
tion and then decompresses it to result in an output that is similar at 
large scale, but not identical in the lowest-level details. The process of 
reproduction via an egg stage (bottom sub-panel) has the same archi-
tecture, except that evolution not only learns the encoding, but also 

simultaneously encodes the structure of the developmental machin-
ery—the decoder itself. C The evolutionary process has not only a 
genome (the target of mutation) and the anatomical phenotype (the 
target of selection), but also a critically important layer between 
them: the morphogenetic physiology that guides embryogenesis, mat-
uration, metamorphosis, remodeling, regeneration, and suppression 
of cancer and aging. The circuits that implement the computational 
features of this layer themselves have a bottleneck (or “bow-tie”) 
architecture, exploiting biochemical, bioelectrical, and biomechani-
cal modalities. These use higher-level “virtual governor” [275, 295] 
nodes such as calcium patterns, resting potential, or tension—power-
ful dynamical control points that are complex functions of the under-
lying molecular details and do not map 1:1 with any gene or gene 
product. Images in all panels by Jeremy Guay of Peregrine Creative; 
Panel A used with permission from [14]
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then focus on a fascinating knowledge gap: what implications 
do the computational properties of the biological software 
layer have for the evolutionary process itself?

From genotype to phenotype 
in development: implications of an indirect 
pathway

One key property of developmental morphogenesis is its 
emergent nature, in which the relationship between geno-
type and phenotype is highly indirect. It has long been 
clear that genomes do not directly code for anatomies; 
instead, DNA encodes for proteins—the nano-level hard-
ware made available to each cell. The behavior of cells, 
in a “social” context of multicellularity [15, 16], is what 
gives rise to functional anatomies (Fig. 2). Cellular behav-
iors include proliferation, migration, differentiation, shape 
change, and apoptosis, operating in parallel over millions 
or billions of cells that are signaling to each other via 
chemical, electrical, and mechanical modalities—coordi-
nating directly, at long range [17], or by using their micro-
environment as a stigmergic scratchpad. This generative 
process is critical not only during embryonic development, 
but also in maturation, metamorphosis, regeneration, and 
suppression of cancer and aging—establishing and main-
taining order across multiple scales [18, 19].

A major implication of this architecture is that it is 
irreversible—while it is straightforward to watch (or 
potentially to simulate) how biology follows local rules 
of chemistry and physics and thus to discover what anat-
omy emerges from a given genome, the inverse problem 
[20] is in general unsolvable: determining which pro-
tein sequences must be encoded to produce an arbitrary, 
desired large-scale anatomical form. This irreversibility 
of the recursive, highly emergent process of morphogen-
esis is what limits full-scale Lamarckism: the difficulty 
is not how to penetrate Weismann’s barrier and edit the 
genome in light of somatic experience—mechanisms 
exist for this [21–23]. Rather, it is how to know what to 
change in a genome to produce a desired feature based 
on physiological events (e.g., a longer neck). This is a 
direct consequence of the fact that while the central dogma 
could, mechanistically, be reversed, the output of the 
DNA- > RNA- > protein cycle is not anatomy, so revers-
ing it does not solve the problem of going from anatomi-
cal features back to DNA. This is why we cannot predict 
the anatomies and morphogenetic capabilities of chimeras 
made of different cell types [24], despite having genomic 
information for both. For example, while we have the 
genomes for frog and axolotl species, one of which makes 
embryonic legs, we cannot predict if a frogolotl (chimeric 
50/50 mix) would have legs, and if so, whether those legs 

will consist only of axolotl cells or both, or whether they 
will be regenerative like adult axolotl legs. This is because 
this is fundamentally a question of collective decision-
making, which is still poorly understood. In fact, we can-
not even predict a single-species anatomy from a genome 
without first comparing it to a genome whose anatomical 
outcome we already know. This also sets a ceiling on the 
biomedical applications of technologies such as CRISPR 
and other forms of gene therapy: without being able to 
determine what we have to change to get a specific system-
level outcome, our ability to control genomic information 
to solve complex injuries and disease states will be highly 
limited. Workers in the field of AI and machine learning 
are well familiar with this issue as “credit assignment”. 
However, as will be argued below, this limitation is actu-
ally a hugely important intelligence ratchet in biology, 
because it forces evolution to increase and exploit the 
competency of its material and the subsequent top-down 
control (biological innovation via behavior shaping).

The indirect nature and complexity of morphogenesis 
raises questions as to how evolutionary exploration can give 
rise to coherent organisms: the search space seems extremely 
rugged and hard to navigate using the hill-climbing algo-
rithms we associate with evolution. This has given rise to a 
number of proposals [1, 25–36] to expand the neodarwinian 
synthesis in various ways. Here, I take a different direction, 
focusing on one specific aspect of morphogenesis which may 
provide a critical missing piece in our understanding of evo-
lution: the affordances supplied by the plasticity and prob-
lem-solving capabilities of the cells which form the substrate 
of morphogenesis. Metazoan cells have numerous adaptive 
behaviors because they derive from ancestral unicellular 
organisms that needed a full range of behavioral capabili-
ties to survive. Thus, the evolution of metazoan anatomy 
operates not on a passive material, but on an agential one 
[37]. I argue that what evolution is really searching is not the 
enormous space of all possible local rules, but instead the 
space of behavior-shaping signals by which cells hack each 
other’s functionality, and that the collective intelligence [38, 
39] of cellular swarms has major implications for the rate 
and course of evolution.

Insights from collective intelligence 
and behavioral science: morphogenesis 
as the work of computationally competent 
modules

New developments in the science of collective intelligence, 
and classic concepts from behavior science, are beginning to 
provide a crucial new lens on morphogenesis that comple-
ments the current view of patterning as a complex dynami-
cal system (such as a cellular automaton) with open-loop 
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emergent complexity. This stance emphasizes plasticity and 
computational competencies for problem-solving in diverse 
spaces—aspects which need to be dealt with using ideas 
from cybernetics [8, 9, 40], as well as physics. William 
James defined intelligence as the ability to reach the same 
goal by different means [41]. The emphasis is not just the 
well-known importance of modularity [2], but also the criti-
cal cybernetic properties of biological modules and the ways 
these enable reliability and task delegation (i.e., problem 

decomposition) across scales in vivo. Together, these fea-
tures connect readily to concepts such as re-programmabil-
ity, hacking, predictability, and multiscale polycomputation 
[42, 43]. This has massive implications for evolution, which 
are described below.

It is critical to emphasize from the outset that this 
research program does not support non-naturalistic expla-
nations for evolution, does not make use of exotic influences 
on mutation such as quantum effects [44, 45], and does not 
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require any goal-directedness in the evolutionary process at 
the large scale. Instead, it builds on progress in connection-
ist machine learning [34, 35, 46–50], basal cognition [12, 
51–55], and an extension of neuroscience to developmental 
bioelectricity [56–58] to reveal how the collective intelli-
gence of cells serves as an affordance for evolution. In that, 

it is complementary to current efforts to understand how 
network and other generic mathematical and physical prop-
erties affect the evolutionary process [59–68]. It should be 
noted that the below discussion is specifically focused on the 
traditional view of evolution, avoiding the fascinating and 
critical roles of epigenotype, epimutations, and other mecha-
nisms that enrich the dynamics of inheritance. My goal here 
is to examine the major impacts that cellular intelligence has 
on even a mainstream view of the Modern Synthesis. Thus, 
I avoid the interesting (and widely debated) aspects of epi-
genetic inheritance [28, 69–73], which will be incorporated 
in future work, to focus attention on a number of unconven-
tional hypotheses in the context of an uncontroversial view 
of evolution.

Developmental plasticity and evolution 
today

The implications of developmental architectures for evo-
lution have begun to be explored via the understanding of 
phenotypic plasticity [74–78] and the way that behavioral 
agency of whole organisms shapes how evolution explores 
the latent space of phenotypes [77–82]. For example, the 
changes in skeletal features, behaviors, and physiology of 
fish and amphibia in novel stressful environments [83, 84] 
have been suggested to bias evolution and strongly comple-
ment traditional mutational variation as a source of change 
[77, 78, 85]. However, the crucial aspect is not simply that 
the complexity of development enables changes by real-time 
events, and that the genome does not uniquely specify one 
possible outcome. More than that, a view of morphogenesis 
as simply a recursive, massively parallel process limits bot-
tom-up control via genetic editing in biomedical engineering 
for the same reason it limits the efficiency of evolutionary 
search across micro-level properties of a passive material. 
It is proposed that for the same reasons that bioengineers 
are now turning to top-down control policies and interven-
tions [37, 58], evolution has discovered an architecture that 
exploits its unique substrate: cells and tissues with specific 
competencies, behaviors, and input-driven decision-making 
computations.

It is proposed that the plasticity of development and its 
implications for evolution cannot be optimally captured by 
an exclusive dynamical systems perspective in which dif-
ferent outcomes simply occur as the result of different envi-
ronmental inputs working their way through a mechanical 
process. It has been suggested that morphogenetic mecha-
nisms exist on a continuum of problem-solving capacities 
that exists across scales within the biosphere [54, 77, 81]. 
Evolution can thus be seen as not only shaped by organ-
ism-level learning and intelligent behavior [27], but also by 

Fig. 2  Emergence and genetic encoding architectures. A The incred-
ibly complex anatomical structure of an organism (shown here is a 
cross section through a human torso) is produced by the blastomere 
descendants of a single fertilized egg cell and its genome, which 
directly specifies protein sequences (some of the cellular hardware 
components), not large-scale geometrical features or functionality 
(nor aspects such as cytoskeletal structure or membrane composi-
tion, both of which are inherited parallel to the DNA [206]). B One 
way to achieve complexity via a compressed encoding is through 
“emergence”. Here are shown four simple rules of Conway’s “Game 
of Life” that specify the states of a specific cell at each time point 
based on the state of its neighborhood [296]. Such cellular automata 
produce patterns that, to a large-scale observer, reveal movement pat-
terns (B’) such as ‘gliders’, and even structures (B”) that continuously 
produce these virtual moving dynamical patterns (entities), despite 
the fact that the rules are extremely simple and do not say anything 
about global patterns or their properties. C In the problem space of a 
complex coordinate plane (2-dimensional grid of positional informa-
tion), a very simple, local policy can be defined for determining the 
state of every cell at a position in the grid: a color can be assigned 
based on how well a root-finding method, such as Halley’s method 
performs (a simple algorithm [297]). This gives rise to very complex 
biological-looking forms (C’) complete with multiscale structure and 
subtle left–right asymmetry. However, all of these kinds of emergent 
complex systems have a fundamental problem: they are irreversible. 
What changes could be made in the rules of (B) or the short complex 
number formula that encodes the image in (C’), to make a glider that 
moves at a different angle or a pattern that had a different number of 
blobs and spacing of “hairs” on them, respectively? Such open-loop 
(purely feed-forward) schemes do not facilitate control interventions 
(e.g., regenerative medicine) and limit evolution to a simple search 
of the micro-space of generative rules which is very rugged because 
the final features are an extremely complex, tangled result of the ele-
ments’ following of those rules. D A different architecture is sug-
gested by considering that the subunits may be themselves complex 
components that implement feedback—cybernetic goal-directedness 
in which energy is used to optimize specific higher-level metrics. The 
level of control of the subunits that build the organism, as well as of 
the organism itself (and any swarm of which it may be a part), can 
span many different competency levels on a scale such as proposed by 
[99]. E Simple picture of genes being responsible for specific features 
of the organism (which, had it been true, would have made the goals 
of genomic editing straightforward) has been supplanted with one in 
which each genetically encoded piece of hardware ends up contrib-
uting to many different components of the whole [248] (E’), which 
raises the inverse problem described above. In contrast, thinking of 
the genetics as specifying the hardware of computational agents that 
have competency to solve specific problems (e.g., build an appro-
priate structure despite changes in cell number, or starting position) 
offers a much more direct architecture. Closed-loop (homeostatic) 
agents enable behavior-shaping signals that alter setpoints, not just 
micromanage hardware components, allowing for a much more linear, 
tractable, and robust control policy that facilitates evolution as well as 
biomedical control. Images in panels A, B, E by Jeremy Guay of Per-
egrine Creative. Panel D used with permission from [99]

◂
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physiological and anatomical level intelligence [55]. This 
perspective links the plasticity of the morphogenetic process 
with the field of basal cognition, which seeks early evolu-
tionary origins of classical intelligence and problem-solving 
in behavioral science by looking at lower level examples of 
adaptive behaviors that rely on information processing. Cells 
and their components have many competencies for adap-
tive behavior when navigating physiological, metabolic, and 
transcriptional spaces [86]. Examples include the ability of 
gene-regulatory networks and chemical pathways to learn 
from experience [87–89], for transcriptional machinery to 
rapidly adjust to compensate for entirely novel physiologi-
cal stressors [90], and for unicellular slime molds to explore 
their environment at a distance and make decisions using 
memory and comparison of alternatives [91–95].

Intelligence and evolution: the impact 
of competency at new scales

The impact of intelligence on evolution has been studied 
[36, 96]. However, it has largely focused on intelligence of 
the organism (classical behavior in 3D space), and is only 
now beginning to be extended to higher levels such as the 
intelligence of swarms [97, 98] and entire ecosystems [49]. 
The framework discussed herein extends the study of the 
relationship of intelligence and evolution in several basic 
ways. It extends the notion of intelligence to sub-organis-
mal scales, casting morphogenesis as the result of collective 
intelligence at the molecular cell, tissue, and organ levels. 
It operates within a gradualist [14] perspective on intelli-
gence and goal-directedness [57, 99], which are both used 
here in a naturalistic, cybernetic, engineering sense of var-
ied degrees of competent problem-solving in diverse spaces 
by unconventional agents (i.e., not restricted to higher-level 
cognitive capacities in brainy animals). Thus, it emphasizes 
morphogenesis as a computational process, not merely the 
emergent outcome of highly parallel local rules that could be 
dealt with by established complexity theory tools. Moreover, 
it expands the concept of intelligent behavior across a key 
invariant: effective navigation of diverse problem spaces, 
which includes problem-solving in physiological, meta-
bolic, transcriptional, and anatomical spaces [12, 13, 86]. 
With these expansions in hand, it becomes possible to see 
how evolution pivoted some of the same strategies across 
these domains, and to then explore the implications that this 
multiscale competency architecture has for the evolutionary 
process itself.

Several open problems are addressed below. What are 
some of the features of morphogenesis that enable evolution 
to search a very difficult space (with pleiotropy, degeneracy, 
redundancy, etc.)? How can evolution be so rapid and effec-
tive at using mutation to address opportunities of form and 

function? How do we explain the ubiquitous presence of 
novel capabilities in living things for which no direct selec-
tion forces are plausible? Analysis of morphogenesis as the 
behavior of a collective intelligence of cells leads to the fol-
lowing key proposals. First is that the space which evolution 
actually searches is not only the space of microstates of the 
genome, but also a much more tractable space of behavior-
shaping signals: evolution exploits cellular intelligence as 
a highly exploitable affordance. Second is that by using a 
variational autoencoder-like architecture of compression into 
a generative genome (Fig. 1), evolution is freed from over-
training on past conditions and pushed to evolve general-
purpose problem-solving machines which inevitably display 
robustness, plasticity, and adaptive success in entirely novel 
circumstances. Interestingly, these ideas are more famil-
iar concepts in neuroscience; consistently with the recent 
advances in basal cognition [100–104], these concepts apply 
long before complex brains appear. My hope is that the fol-
lowing analyses extend an active research program on these 
ideas in regenerative medicine [58, 105–109] and synthetic 
bioengineering [37, 101, 110–113] to also impact evolution-
ary biology and engineering of artificial systems via evolu-
tionary algorithms [96, 114–119].

Scaling up from cellular competency 
to collective intelligence

Basal cellular competencies did not disappear during the 
transition to multicellularity: instead, they scaled up as a 
collective intelligence to operate in larger and more complex 
problem spaces [13]. Models of mechanisms by which sin-
gle-cell competencies potentiate problem-solving capacities 
in larger and different problem spaces include gap junctional 
merging of intracellular milieus and other forms of tissue-
level signaling (e.g., stress propagation). This promotes 
sharing of chemical engrams, which also help to wipe the 
individuality of cells, and enlarges the memory, predictive 
capacity, and sensory/effector radius of cellular networks, 
enabling them to pursue larger goal states in spaces like 
anatomical morphospace [14].

The key feature of scaling up individuality (whether 
evolved or engineered) is for higher levels of control to get 
their components to do things they do not do when operat-
ing as individual units [46, 120]. This can be discovered 
by extracting the parts of organisms and examining their 
behaviors in new contexts [121]. A cell-level example is 
that fragments of keratocytes move in a specific direction in 
an electric field, but whole keratocytes (collections of such 
fragments) actually move in the opposite direction [122]. A 
morphogenetic and behavioral example is seen in Xenobots 
[123, 124]. Frog embryo skin cells, in vivo, form a two-
dimensional, passive layer on the outside of the animal that 



Darwin’s agential materials: evolutionary implications of multiscale competency in…

1 3

Page 7 of 33   142 

protects it from pathogens. However, when liberated from 
the instructive influences of the other cells, frog epithelial 
cells instead form a Xenobot—a functional, self-motile 
construct with many novel behaviors that are normally sup-
pressed and hidden by the instructive signaling of other cells 
during development [125]. Human tracheal cells from adult 
donors also form such biobots, with the remarkable ability 
to traverse and heal neural wounds [126]. Thus, it is not 
obvious what the default morphogenetic behaviors and capa-
bilities of cells are, because of the ubiquitous dominating 
controls of other cells in their environment. In some cases, 
embryonic capacities (e.g., formation of appendages) are 
“lost” at maturity (e.g., limbs in adults of many species), 
but can be activated in non-regenerative contexts by specific 
stimuli that can be provided by bioengineers in the context 
of regenerative medicine [127–129].

These and other examples indicate that biological compo-
nents are themselves, to varied degrees, autonomous, but are 
controllable by signaling from other cells [37]. The dynamic 
of using simple signals that take advantage of the recipients’ 
complex, reliable repertoire generalizes to the concept of 
hacking, which is applicable at multiple scales and in many 
contexts (Fig. 3), ranging from chemical signals in cellular 
induction to colony-scale behavioral phenomena driven by 
acoustic signals [130]. The crucial focus in this concept is on 
the role of an agent that takes advantage of affordances in its 
own way, not necessarily in the ways “intended” by an engi-
neer, or by evolutionarily-prior functions. Past discussions of 
relevant phenomena include developmental niche construc-
tion [131, 132], cancer cells reprogramming normal neigh-
bors [133], host-altered behavior due to parasites that exploit 
neurotransmitter mechanisms [134] (and the reverse—the 
host evolving machinery to manipulate the parasite [135]), 
zombie ants controlled by fungi [136], the explore/exploit 
strategies of young mammals [137], and many others. An 
amazing example of morphogenetic hacking is the forma-
tion of galls, where signals from a parasite force the leaf 
cells away from their normal flat, green tissue phenotype and 
into building spiky, three-dimensional colorful forms [138].

Many such phenomena work because of the agency of the 
material being hacked. This includes viral infections since 
viruses have very limited capabilities and rely on the cell for 
all of its physiology; the use of toxins to manipulate hosts 
[139]; and the phenomenon of kinematic self-replication 
by Xenobots. These motile synthetic organisms make cop-
ies of themselves in an evolutionarily novel manner: when 
provided with loose cells, the biobots corral them into piles 
which self-compact and thus spontaneously form the next 
generation of biobots which go on to repeat the cycle [125]; 
this only works because the material itself is competent to 
form a viable Xenobot when rearranged (Fig. 3). At higher 
levels of organization, one can see classic organism-level 
communication and signaling as examples of hacking the 

more agential elements of one’s environment (i.e., the con-
specifics, predators, and prey contained in it).

Thus, the concept of hacking extends well beyond the 
typical strategies used for traditional engineering with inert 
materials, or computational matter (as in, the computer sci-
ence notion of hacking [140]), to systems with significant 
agency: hacking is conceptually linked to behavior shaping. 
In this perspective, everything in biology is a hacker, reaping 
rewards of efficient manipulation of its environment (and 
its internal components) using the appropriate tools (from 
direct chemical effects to subtle signals meant to be inter-
preted by complex agents): cells, parasites, viruses, trans-
formed cells defecting from the morphogenetic goals of a 
tissue (cancer), tissues and organs during morphogenetic 
induction and competition (even within the same body [141, 
142]), whole organisms, and swarms. Evolution can thus 
search the space of behavior-changing signals, exploiting the 
complex, agential nature of the cells which are its substrate 
as a hugely powerful set of affordances [143].

Bioelectric control: a mechanism for scaling 
cell behaviors to large-scale morphogenetic 
goals

One especially powerful interface. which is exploited by 
evolution to accomplish morphogenesis, is the bioelectric 
layer of control (Fig. 4). Cells perform numerous computa-
tions in controlling their behavior via the voltage dynamics 
of ion channels and pumps [107]. But evolution discovered 
very early on, around the time of bacterial biofilms [144], 
that electric networks are also extremely convenient ways to 
integrate and process information across space and time, and 
to scale the functions of individual computing units towards 
a large-scale task (the same reason that brains, and comput-
ers, use this modality [145]). Several examples from the field 
of developmental bioelectricity illustrate this point.

For example, in frog embryos, a set of cells known as 
“instructor cells” [146, 147] normally suppress melanocytes’ 
native behavior via serotonergic signals. In the absence of 
these signals, the melanocytes exhibit an over-proliferative, 
hyper-invasive phenotype strongly resembling melanoma 
[148]. Even more interestingly, the bioelectric signaling 
scales independent decision-making of the cells toward a 
collective outcome. When the control system is perturbed, 
stochastic outcomes (e.g., 70% conversion) result, but only 
at the level of the organism—each animal’s melanocytes 
are either all normal or all converted, at some stochastic 
rate: they toss a coin, but all the cells are tossing the same 
coin. It required a machine learning algorithm to analyze 
this control system and discover an intervention that breaks 
the concordance and enables individual melanocytes within 
the same body to make independent decisions [149]. This 
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bioelectric signaling, which involves serotonergic control, 
parallels what nervous systems do to bind individual cell 
behaviors, even stochastic ones, toward a system-level col-
lective behavior.

The vertebrate face [150, 151] is patterned by a set of 
bioelectric gradients that regionalize gene expression to 
determine the locations of eyes, mouth, and other compo-
nents. Reproducing these patterns elsewhere in the body via 
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misexpression of specific ion channels enables the induction 
of whole ectopic organs, such as eyes [152] on the gut or 
tail of a tadpole (thus unlocking novel capabilities of body 
regions, since only the anterior neurectoderm is competent 
to make eyes via signals from the chemical master regulator 
Pax6). Remarkably, when only a small number of cells are 
injected, they recruit their normal, unperturbed neighbors 
to participate in the process to make a normal-sized lens 
(Fig. 3). Thus, in response to the bioengineer’s instructions 
to “make an eye”, the prompted group of cells not only 
activates all of the required downstream molecular events 
(which are not directly specified by the simple, trigger-like 
stimulus supplied), but also determine how many additional 
cells are needed for large-scale morphogenetic setpoints 
such as size control and signal to activate them as well. This 
ability to scale recruitment of elements to task size is simi-
lar to that seen in collective intelligences such as colonies 
[153, 154].

Crucially, this is not just modularity [3] (“do the same 
thing again, in another place”), but takes advantage of 
cellular swarms’ competency to adjust dynamically to 

circumstances as needed, because the modules are not 
structural or hardwired. The cybernetic lens is appropriate 
here (and fruitful) because cell groups demonstrate diverse 
degrees of ability to accomplish a defined set of outcomes 
despite changing circumstances and can be manipulated top-
down. This system for integrating the behavior of cells and 
tissues offers many advantages for phenotypic richness, but 
like any programmable interface is amenable to exploitation. 
For example, the bioelectric system for control of head shape 
and location in planaria [155, 156] can readily be hijacked 
by microbes that can control the number and structure of 
their host’s heads [157]. It is straightforward for evolution 
to also exploit these modular competencies: to reproduce an 
eye in another location, evolution does not need to reproduce 
all the underlying mechanisms.

Morphogenetic control as a collective 
intelligence

“Intelligence: the ability to reach the same ends by 
different means.”
― William James
The current paradigm for understanding morphogenesis 

focuses largely on ideas from emergence and complexity 
theory. It is clear that some local rules, executed repeatedly 
and in parallel by large numbers of cells, can result in an 
emergently complex structure (Fig. 2). This is true, and we 
now have good mathematical formalisms for understanding 
emergent complexity. However, this is a limiting paradigm 
because it is entirely feed-forward, or open loop: causality 
is thought to move in only one direction (from the molecular 
details upward) [158, 159], and thus all modifications have 
to be made at the level of the rules. Because the inverse 
problem is not generally solvable, this view locks in a model 
of evolution limited to searching the genotype space (which 
may be extremely rugged, due to its nonlinear relationship 
to the phenotype space). It also limits workers in bioengi-
neering and regenerative medicine to exclusively targeting 
the molecular hardware in hopes of improving system-level 
outcomes (which in turn results in the difficulties with drug 
discovery [160]).

Fortunately, there are now tools available to begin to 
think in different ways about morphogenetic control, which 
facilitate new research and make possible a new roadmap 
for discovery of intervention policies, both by bioengineers 
and by the evolutionary process. The first is cybernetics [99, 
161]: by emphasizing the information-processing capacities 
of multiscale components of living systems (with all of the 
attendant implications of circular control, multiscale causal-
ity, etc.), it becomes possible to recognize the reliability of 
morphogenesis as a consequence of the goal-directedness 

Fig. 3  Morphogenetic hacking. A Morphogenesis is implemented 
by cells, which were once organisms themselves. Thus, the process 
of anatomical homeorhesis [252, 298] is implemented by a set of 
behavior-shaping signals in which some cells control the behavior 
of other cells.  Image by Jeremy Guay of Peregrine Creative. B One 
example is seen in the behavior of frog skin cells, which produce a 
passive, two-dimensional outer layer in a normal frog embryo, but 
when freed from the instructive interactions of other cells become 
Xenobots—spherical constructs that move autonomously and even 
exhibit entirely new behaviors such as kinematic self-replication (B’), 
in which they assemble loose cells into clumps that become the next 
generation of Xenobots and repeat the cycle in subsequent genera-
tions [124, 125]. Panels B, B' by Douglas Blackiston, used with per-
mission from [125]. C When bioelectric signals that indicate “build 
an eye here” are reproduced in other locations of a frog embryo via 
potassium channel modulation [152], a complete eye can be formed 
even out of gut cells without needing to micromanage the construc-
tion of a complex organ—the modular trigger induces a morphoge-
netic process that can reliably take place in novel environments. Panel 
C used with permission from [148]. D The process is more than just 
triggers of master-regulator signals. When an insufficient number of 
cells is modulated (indicated in blue beta-galactosidase tracer), they 
recruit their normal (unmodified) neighbors to complete the task of 
building an ectopic lens of the right shape and size. This ability to 
complete a particular action in morphogenetic space by controlling 
the behaviors of other cells in a context-sensitive, dynamical man-
ner is a key feature of controllability and reliability—it is how the 
problem-solving capacities of cells, not just ability to execute the 
same hardwired local rules, facilitate adaptive robustness in novel 
circumstances.  Panel D courtesy of Sherry Aw, used with permis-
sion from [37]. E The controllability can be exploited even in cross-
kingdom interactions (not just by bioengineers), in which plant cells 
are induced to form morphologically highly novel structures known 
as galls by signals from fungi or insect embryos: the novel structures, 
which differ greatly from the default, are an example of natural hack-
ing of morphogenetic machinery (E = urchin gall on a scrub oak, by 
Timothy Boomer at WildMacro.com; E’ = hedgehog gall, by Andrew 
Deans)
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of underlying processes. It is essential to abandon the tradi-
tional scientific teleophobia [162] because cybernetics and 
control theory now provide a mature, naturalistic, quantita-
tive science and engineering approach to mechanisms with 
goals. Goals do not require magic, they require a specific 
causal structure [163, 164], which is ubiquitous and not 
restricted to complex brains. The critical importance of the 
cybernetic worldview for developmental biology has been 
recognized already [7–9, 165–167]. Additional tools are pro-
vided by advances in information theory which have now 

rigorously shown that higher levels of organization can have 
causal power and drive lower-level events in the only sense 
that matters: by serving as the most effective control points 
at which to make changes in the system [168–172]. This is 
as relevant for regenerative medicine as it is for evolution, 
and is becoming a very useful lens through which to relate 
to biological systems.

The crucial transition is recognizing that homeostatic 
cycles, the atoms of cybernetic systems, are not merely 
feedback loops (which are widely accepted as ubiquitous 
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in biology), but are the first rung on a spectrum of intelli-
gence [99]. Intelligence is used here in William James’ defi-
nition, not limited to advanced metacognition in primates. 
The field of basal cognition [53, 54, 173] seeks to unravel 
the evolutionary origins of the brain’s remarkable trick—
unifying the activity of millions of cells (neurons) toward 
a common purpose in behavioral space. By examining the 
transitional forms that smoothly continue all the way down 
to microbial molecular networks, a wider understanding of 
diverse intelligence has had to be forged [14, 55]. From this, 
the view of the brain as a collective intelligence has been 

enlarged to understand the morphogenetic transformations 
of the body as a collective intelligence of cellular swarms, 
which solve problems in other spaces [39, 86]. Thus, the 
robustness of development is not of first order (do the same 
thing reliably each time), but of higher degree (achieve the 
same target morphology, by various means, despite various 
perturbations).

Taking evolutionary continuity seriously and applying 
concepts from cybernetics reveals an important invariant: 
navigation in problem spaces as a common set of capacities 
that range across a continuum (Fig. 5) of competency. Differ-
ent degrees of intelligence are thus cached out in engineer-
ing terms as abilities to overcome barriers in the problem 
space, in a wide range of diverse inorganic, organic, and 
neural-level systems. This generic formulation enables rec-
ognition, prediction, and manipulation of systems across a 
continuum that covers all the intermediate levels of sophis-
tication that lie between two magnets’ ability to get together 
and Romeo and Juliet’s ability to get together [14, 86]. But, 
these competencies cannot be definitively ascertained from 
observations of the default course of morphogenesis, which 
obscures the ability of living tissue to handle novelty (of 
both, external environment and internal composition) and 
lulls the observer into a limited expectation that genomes 
code only for specific outcomes and no more. A very rich set 
of examples belie this misconception and instead support a 
view of morphogenesis as a goal-directed, homeodynamic 
process [11, 174].

The most obvious examples are seen in regulative devel-
opment and regeneration [57, 175], where cells work to 
implement and maintain a large-scale form (target morphol-
ogy) despite surgical, genetic, and physiological sources of 
defects. But it goes much further than that. Tadpoles, in 
which the native eyes are prevented from forming and an 
ectopic eye is instead placed on the tail, can see and perform 
well in visual behavioral training [176], even though the 
ectopic eye connects to the spinal cord (or just to peripheral 
tissue) rather than to the brain—this radical change to the 
sensory–motor architecture does not require generations of 
adaptation to produce successful behavior. Tails grafted to 
the flanks of amphibians slowly turn into limbs [177]—a 
structure more appropriate to the large-scale target mor-
phology (even though, for example, the local environment 
for the tail-tip cells is perfectly correct); and craniofacial 
structures that start out in odd positions are often corrected 
[178]. Frog skin cells, forbidden access to the normal repro-
ductive and other capacities of an entire embryo, neverthe-
less create a functional proto-organism that makes copies of 
itself through kinematic replication, a mode unknown within 
the natural tree of life [125]. Perhaps the most remarkable 
example of this is Slijper’s goat [179], in which the effort of 
trying to walk upright (due to lack of forelimbs) drove, in 
one generation, many of the anatomical and physiological 

Fig. 4  Bioelectric machinery underlying morphogenetic control. 
A The computational architecture of the nervous system relies on a 
network of cells, which set their resting potential via ion channels in 
their membrane, and communicates that state via controllable elec-
trical synapses known as gap junctions [299]. B This machinery is 
ancient, with all body cells having resting potential across their mem-
brane  (Vmem) mediated by the same ion channels and most cells mak-
ing gap junctional connections to form bioelectrical networks [188]. 
C This interface can be manipulated in any tissue in the same way as 
neuroscientists probe brain tissues: using molecular reagents to con-
trol connectivity (via opening and closing gap junctions) or directly 
setting voltage states by opening and closing ion channels (using 
drugs or optogenetic light stimulation). Also, the downstream mes-
sengers (neurotransmitters) operating in many tissues can be con-
trolled directly [300, 301]. D An example of imaging of the bioelec-
trical prepatterns that define morphogenetic setpoints is the “electric 
face” revealed by signals from a voltage-sensitive fluorescent dye 
that indicates the future positions of the gene expressions, and sub-
sequent anatomical structures, of the early frog embryo anterior ecto-
derm. This pattern is instructive because if it is shifted artificially 
and induces the predictable changes in subsequent development. 
Note the simplicity of the encoding—the bioelectrical states repre-
sent high-level order (elements of the target morphology for regula-
tive development), such as the location of an “eye” or “mouth”, not 
the state of gene expression or individual stem cell fate. E The bio-
electric representation of the target morphology guiding the cellular 
collective can work as a counterfactual memory, as in the example 
of the cryptic planaria: animals with normal one-headed anatomy and 
gene expression, but a two-headed target morphology representation 
in the bioelectric circuit (shown here using the voltage dye imaging), 
which causes them to build two-headed animals if cut into fragments 
[193]. F The bioelectric prepattern is a true memory because, despite 
the wild-type genetic sequence, fragments from two-headed animals 
continue to generate two-headed animals in perpetuity (with no more 
treatments) [195]—this is an example of the software layer that is 
reprogrammable and enabled by the genetically specified ion channel 
hardware, which does not need to change to be shifted to an entirely 
different large-scale target morphology. G Not only can head number 
be reprogrammed by a brief physiological stimulus to the morpho-
genetic agent, but also head shape: an animal with a triangular head 
shape can be shifted toward morphologies (including brain shape 
and stem cell distribution) [197, 198] of other species with round or 
flat heads. This enables the cellular collective to explore attractors in 
morphospace (G’), using the exact same genome, which eventually 
could become canalized into genetically distinct species. Panels in A, 
B, C are courtesy of Jeremy Guay of Peregrine Creative; A, B used 
with permission from [188]. Panel D is used with permission from 
[150]. Panel E is used with permission from [106]. Panels F, G are 
used with permission from [107]. Panel G’, by Alexis Pietak, is used 
with permission from [197]
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changes usually thought to require long periods of evolution-
ary adaptation to bipedalism.

These kinds of abilities to achieve target morphology are 
not unique to damage-repairing programs that evolved spe-
cifically to handle injury. They occur at all scales of organi-
zation, suggesting they may be a general capacity arising 
from our microbial ancestors’ need to respond to changes 
in their environments and in their own genomes. For exam-
ple, mice with mutated semaphorin proteins still produce 
(through a novel path) correct connectivity of migrating 
thalamocortical connections [180]. Even more radically, 
animals artificially made with extra copies of their entire 
genomes, which produces huge cells, still exhibit normal 
size [181–183]. In the kidney system of polyploid newts, the 
normal cell:cell communication that creates a tubule from 
eight to ten cells working together is swapped for a single 
enormous cell that wraps around itself to create the same 
final outcome [184]. This is a good example of downward 
causation, because in the service of a large-scale anatomical 
goal, different molecular mechanisms (cell–cell communica-
tion vs. cytoskeletal bending) are deployed as needed for an 
unexpected change (a drastic increase in the copy number 
of all genes). The ability to handle, without periods of evo-
lutionary change, an unexpected alteration in something as 
basic as one’s own genome and cell size echoes the theme 
that has been seen in the study of behavioral learning and 
evolution [36, 185]: degrees of behavioral intelligence can 
produce adaptive outcomes on timescales that are much 
faster than evolutionary search for hardwired phenotypes 
for each problem, and on landscapes whose ruggedness is 
too high for the basic evolutionary search process.

Seeing development, metamorphosis, regeneration, and 
cancer suppression all as manifestations of an anatomical 
homeostasis loop (Fig. 6) raises the obvious question of how 
and where the setpoint (target of homeostatic error minimi-
zation) is stored. Having been predicted as far back as the 
1940s [186, 187], it has recently been found and manipu-
lated using the same concepts and tools that have allowed 
neuroscientists to manipulate goal-regulating behaviors in 
living brains.

Bioelectric networks as reprogrammable 
interface to morphogenetic capabilities

Evolution broadly exploits bioelectric networks for the same 
reason they underlie cognition in the brain and computation 
in our information technology: they have some very attrac-
tive properties with which to build generic learning and 
problem-solving systems [58]. All cells participate in elec-
tric networks, which allows them to compute and increase 
the size and complexity of simple homeostats (Fig. 7). Neu-
rons speed-optimized the process and took advantage of 

Fig. 5  Examples of morphogenetic and functional competency. A Many 
embryos, including human, can be split in half at early stages and give rise to 
multiple normal whole bodies (monozygotic twins), making up for very drastic 
damage to nevertheless achieve the correct target morphology. B The same is 
true of regeneration, in which for example a salamander limb can be ampu-
tated at any level, and the cells will rapidly rebuild exactly what was missing, 
stopping when the correct target morphology has been achieved. C A remark-
able example of top-down control occurs when newt cells are made to be larger 
than normal, by forcing polyploidy [181, 184]. The same overall kidney tubule 
structure and diameter results, despite the incorrect details at the lower level 
(excess genetic material, and wrong size of building components), as the cells 
adjust their number to the new size—this happens in real time (developmental 
timescale) not requiring evolutionary changes in the genome. Most amazingly, 
a different underlying molecular pathway is triggered (cytoskeletal bending, vs. 
cell–cell communication) when the cells are made so large that the only way to 
build the structure is for one single cell to wrap around itself, leaving a topo-
logical lumen. D The plasticity is not only structural, but also functional. When 
eye primordium cells are transplanted to the tail, they not only make a cor-
rect eye despite abnormal environment, but the resulting animals (which can be 
made to lack primary eyes) can efficiently see out of these eyes, which do not 
connect directly to the brain [176]. This does not require evolutionary adapta-
tion to the new sensory system architecture, illustrating the amazing ability of 
body components to make up for unexpected changes induced by mutation or 
other means: a property that has huge implications for the evolutionary pro-
cess. Panel A photo by Oudeschool via Wikimedia Commons. Panels B, C by 
Jeremy Guay of Peregrine Creative. Panel D by Douglas Blackiston



Darwin’s agential materials: evolutionary implications of multiscale competency in…

1 3

Page 13 of 33   142 

direct long-range connections, but other than that, many of 
the tricks that brains use to handle novelty are in fact preva-
lent across the body, long predating classical neuroelectricity 
on both evolutionary and ontogenic timescales [145]. Many 
aspects of connectionist models of neural networks’ com-
putational capabilities apply to developmental events [34, 
46, 58, 120]; for example, regeneration is a kind of pattern 
completion in anatomical space, and stochastic phenotypes 
arising from the same genome can be studied as a kind of 
perceptual bistability [106].

Bioelectric networks mitigate the inverse problem by 
serving as the “hidden layers” of a control network linking 
genetics to anatomy (Fig. 1). The relationships of ion chan-
nel genes to the bioelectric pattern, and bioelectric pattern 
to its resulting anatomy, are each easier to invert than the 
direct genotype–anatomy link, so they help to decompose 
the control problem into two easier problems. This not only 
helps natural evolution, but also helps engineers design 
and evolve complex proto-cognitive circuits, and increases 
control capacities for workers in regenerative medicine. 
Bioelectric networks provide modularity (triggers of com-
plex subroutines, such a simple voltage state that triggers 
the “build an eye” or “build a leg” subroutine [188])—a 
known component of evolvability [3, 189]. They also pro-
vide an important kind of coarse graining, since voltage is 
a high-order parameter over ion channel gene and protein 
microstates, and individual ion concentrations: electrogenic 
proteins can be swapped out as needed (e.g., V-ATPase com-
plex in the tadpole tail can be phenocopied by a yeast proton 
pump with no sequence or structural homology, because it 
produces the correct physiological signal), and everything 
still works as long as the bioelectric state is correct [190]. 
Like in the central nervous system, bioelectric interfaces 
that control tissue- and organ-level structure [107] are very 
attractive control nodes. It is no surprise that viruses, whose 
genomes are under significant pressure to remain minimal 
and concise, devote some of that precious space to ion chan-
nel genes [191, 192].

Bioelectric circuits also provide another crucial compe-
tency: memory, which is a specific instance of their more 
general capacity for software-level reprogrammability. 
As in the brain, bioelectric circuits can store information 
in a way that is readily changeable in the lifetime of the 
animal and enable the exact same (genomically specified) 
hardware to have different modes of activity depending on 
prior experience. For example, in planaria, the bioelectric 
circuit that controls the number of heads can be targeted 
with a brief (2-day) physiological intervention that re-sets 
the state of the circuit to specify “two heads” instead of the 
default one-headed bioelectric pattern memory. In this case, 
the exact same hardware (genetically wild-type planarian 
cells) can harbor multiple representations of the bioelec-
trically encoded target morphology that guides the cellular 

collectives during regeneration [193–195]. The question of 
what determines the number and shape of heads in the pla-
narian is subtle, paralleling the question of what determines 
behavior. It is genetics in the sense that genomes specify the 
ion channels needed to form the circuit, but it is not genetics 
in the sense that the actual outcome is controlled by experi-
ence (in physiological and behavioral space, respectively). 
Evolution could make use of this in precisely the same way 
as it exploits classical learning (brain bioelectric dynamics), 
via genetic assimilation and Baldwin effects [29, 196] that 
can later canalize adaptive outcomes of morphogenetic and 
physiological plasticity. Indeed, it has been shown that exist-
ing planarian species’ head shapes are readily recapitulated 
by a genetically wild-type animal experiencing changes to 
its bioelectric circuit during regeneration—100–150 mil-
lion years of evolutionary distance in morphospace can be 
crossed in a few days because of the dynamics of bioelec-
tric pattern memories [197, 198]. If proven advantageous, 
this could eventually be transferred into the genome by ion 
channel mutations that produce the same bioelectric circuit-
driven developmental behavior (assimilation of physiologi-
cal plasticity into the hardware [199]).

Multiple modalities for computation 
and control across scales

As ideal as bioelectric networks are for the plasticity and 
control dynamics that potentiate evolutionary change, they 
do not have a monopoly on this role (Fig. 1). Other mecha-
nisms, operating at other scales, provide the same benefits 
[60]. For example, the richness of cytoskeletal information 
processing [200–202] enables cortical inheritance in uni-
cellular organisms: there, as in planaria, DNA is not the 
only source of morphogenetic information. Changes made 
to unicellular form can persist across generations [203–205]; 
for example, surgical rotation of a small patch of the cell 
surface creates a stable line of animals in which a portion of 
the ciliary beat pushes food out of their mouths—a condi-
tion which their perfectly wild-type genome cannot correct. 
The cytoskeleton serves as a plastic information and control 
medium stretching (parallel to DNA) all the way back to 
our last common universal ancestor [206]. The availability 
of a rapid, stable but re-writable, internal scratchpad is an 
important component of any system that is to exhibit abil-
ity to deal with novelty and to navigate problem spaces in a 
flexible, dynamic fashion.

Another subcellular component with interesting proto-intel-
ligent competencies is the class of pathways, which includes 
both protein interaction and gene-regulatory networks. These 
have been shown to underlie anticipation and probabilistic 
inference [207–209], six different kinds of memory [87–89, 
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210, 211], and other capacities that evolution can exploit in 
the control of individual cell behavior and thus organ-level 
morphogenesis. An example of transcriptional problem-
solving is seen when planaria are cultured in barium [90], a 
non-specific potassium channel blocker. At first, their heads 
degenerate (due to the many cells that require  K+ flux), but 
they rapidly re-grow new heads that are completely barium 
insensitive. Transcriptional analysis reveals that these tissues 
up- and down-regulate just a handful of genes to get back to 
physiological and anatomical setpoints despite the inability 
to regulate potassium. The remarkable thing is that barium 
blockade is evolutionarily novel—planaria very likely have 
never encountered the exotic stressor of barium during their 
evolutionary history, and there have been no selection pres-
sures to develop specific responses to it. Their ability to 
navigate physiological and transcriptional spaces to solve an 
entirely new problem is an example of subcellular competen-
cies for novel scenarios (and perhaps, include the ability of 
generalization from scenarios that they did encounter, such as 
epilepsy-induced excitotoxicity). Finally, the use of chroma-
tin as a computational resource has been suggested to be an 
important driver in evolutionary transitions [212, 213].

Increased understanding of the capabilities of cells and 
their components dovetails with efforts in modern robotics in 

which morphological computation (via biomechanics [214, 
215] and bioelectrics [216]) is heavily exploited—the empha-
sis is not on developing a specific controller that does all the 
hard computational work for a fixed body, but in evolutionary 
approaches that exploit bodies’ innate competencies [217]. By 
being easy to control, the body does much of the hard work 
of the evolved controller [96, 218, 219]. This is an impor-
tant dynamic for understanding how multiscale intelligence 
shapes evolution: much as we examined existing pathways to 
find a perspective from which they appear as trainable systems 
amenable for example to Pavlovian conditioning without any 
structural change [88, 89], evolution can implement behavior-
shaping signals that are equivalent to a control perspective 
on its substrate that recognizes its agential affordances and 
seeks to exploit its inherent competencies, not only microman-
age the underlying details. Indeed, evolved pathway networks 
show much more capacity for learning than random ones [88, 
89], serving as an example of evolutionary enrichment of such 
properties.

The evolutionary origins of these competencies are an 
active area of study: the field of basal cognition seeks to under-
stand how evolution gives rise to increasing competencies in 
navigating diverse problem spaces [14]. Here, however, the 
focus is on the second half of the loop (Fig. 1): how do these 
problem-solving competencies affect the evolutionary process 
itself? The roles of basal agency in evolution are now begin-
ning to be discussed [77, 220, 221]. Models are being for-
mulated for understanding how each layer of the multiscale 
competency architecture (MCA) of life deforms the option 
space for the layers above and below it (Fig. 7). The above-
mentioned examples of induced lens cells recruiting others, 
and of artificially large cells using a different molecular mech-
anism to complete tubulogenesis, demonstrate behavior shap-
ing and top-down control. We can exploit this in engineering 
contexts, but it is certain that evolution discovered the power 
of exploiting these affordances as well. Next, we consider spe-
cific ways in which this dynamic drives an evolutionary ratchet 
for problem-solving capacities and makes sure that the results 
of evolution are often not specific solutions to specific envi-
ronmental niches, but rather general purpose problem-solving 
machines, whose capacities cannot be guessed, or inferred 
from the invariant, default course of development.

Beginner’s mind: self-organization on the "y 
as the origin of multiscale competency

“If your mind is empty, it is always ready for anything, 
it is open to everything. In the beginner's mind there 
are many possibilities, but in the expert's mind there 
are few.”
― Shunryu Suzuki

Fig. 6  Pattern homeostatic properties of the morphogenetic collective 
agent. A The normal process of rearrangements of the tadpole face to 
make a frog face is not hardwired to specific movements. Embryos 
in which the craniofacial structures are scrambled also make largely 
normal frog [178], which shows that these components form an error-
minimization system for the correct target morphology and has the 
competency to reach it even when the initial positions are incorrect. B 
This kind of ability to navigate anatomical morphospace with policies 
beyond hard-coded actions (see the scale of possible competency lev-
els in Fig. 2D) adds an important component to the mainstream open-
loop scheme of traditional gene regulatory networks driving interac-
tions, which result in emergent complexity at the anatomical level. 
The view of the cellular collective as a cybernetic system, which rep-
resents goal states for morphogenesis (see their direct visualization in 
Fig. 4D,E), enables specific research programs to detect, decode, and 
re-write target morphology information without needing to rewire the 
genetic hardware—an attractive prospect for regenerative medicine 
[57, 58, 303]. C The concept of morphological homeostasis during 
regenerative repair could be extended naturally to the broader concept 
of morphological homeorhesis, in which developmental progression 
is a collection of regenerative repairs [57]: each stage is in effect a 
“birth defect” from the perspective of the subsequent stage and is 
“repaired” by regulative development which seeks to minimize error 
(i.e., system-level stress) relative to the bioelectric target morphol-
ogy. This perspective hypothesizes that the bioelectric target pattern 
changes more rapidly than the transcriptional and anatomical pat-
terns, pulling them along by stress-minimizing loops that have been 
scaled up to act on larger metrics than single-cell stress states [304]. 
Maturation and adulthood result when the bioelectric and biochemi-
cal prepatterns stop changing and the anatomy essentially catches 
up and future changes are small-scale maintenance and resistance to 
aging and carcinogenic defections. Panel A taken with permission 
from [178], and courtesy of Erin Switzer. Panel B by Jeremy Guay of 
Peregrine Creative. Panel C by Brenda B. de Groot
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The standard view of evolution emphasizes two things. 
The first is the cumulative nature of the process—each 
change is made in the context of prior events and thus is 
strongly dependent on history. Concepts like ontogenic 
recapitulation of phylogenetic events stress the fact that 
developmental mechanisms must operate with whatever 
components and signals had been established before (were 
adaptive within the prior historical context of that species). 
This is true, but there is a complementary aspect, because of 
the ubiquitous unexpected scenarios that every embryo has 
to face: environmental changes, genetic mutations, physi-
ological stressors, parasites, and numerous other challenges 
that cannot be planned for in advance. Thus, biological 
systems evolve under pressure to remain flexible enough to 
accomplish coherent morphogenesis despite a wide range 
of perturbations.

This means that the most successful, robust embryogenic 
and regenerative processes must not assume prior states 
strongly. The above-mentioned examples show how little 
embryos can take for granted. They cannot assume how 
many cells they have (ability to regulate pattern despite 
available cell number [222, 223]), the genetic complement 
and size of those cells (polyploid newts [181, 184]), the 
starting position of specific structures (unscrambling frog 
faces [178]), or that earlier molecular signaling steps were 
completed correctly (repair of mis-steps in the left–right 

asymmetry pathway [224]). Evolution uses a mix of pre-
specified features and “wildcard” phenotypes which are han-
dled by real-time problem-solving [36]. When evolution is 
seen as a long-term learning process [35, 48–50, 225], it 
becomes clear that it does not over-train on its priors: past 
experience shapes development, but for most creatures (with 
exceptions like the mosaic C. elegans), the mechanisms that 
survive are ones that are not hardwired to specific expecta-
tions but are ready to operate despite a wide range of noise 
and both internal and external uncertainty [35].

This concept can be encapsulated with the term Play the 
Hand you’re Dealt (PHD): successful developmental systems 
are primed to operate with whatever internal and external 
conditions they are faced as they come into the world (within 
some broad, but limited, range). PHD is why biological sys-
tems are highly interoperable with exotic synthetic materials 
[226], why huge mechanistic diversity exists within individ-
uals of an evolutionary type [227], and why viable chimeras 
can be made at every level (from mixing DNA to cell/tissue 
grafts, to parabiosis [24], to hybrots in which brains can be 
used to drive novel robotic bodies or live entirely in virtual 
worlds [174]). This extends to behavior and neuroscience: 
we are all “brains in a vat”, and our neural systems can read-
ily adapt to sensory–motor augmentation with engineered 
devices or novel sense organs [228, 229] because of the fun-
damental plasticity that requires each being to learn about 
its own form and function in real time. Functional behav-
ior from tail-eyes [176] or third arms [230] or video game 
embodiment all works because developmental processes are 
primed to figure out their sensors, effectors, and architecture 
in real time [231–234].

Genomes not only do not encode large-scale features, but 
they also do not even exclusively encode machinery that 
always makes the same large-scale features: they specify 
cellular hardware that solves problems at multiple scales. 
This includes dynamically setting boundaries between the 
self and external world [108], self-modeling [235, 236], 
and exploiting available problem spaces [86]. In addition 
to homeodynamic loops, biological systems exploit affor-
dances of the laws of physics and computation to benefit 
from the learning capacity of network architectures [34, 46, 
49, 88, 89], the informational scaling provided by strong 
cell:cell coupling [13], and the coordinating capacity of 
competition [141, 142]. All of this could result from the 
multiscale competency architecture, in which systems from 
molecular pathways to whole animals (though not being 
units of selection directly) solve local problems in an active 
manner with diverse degrees of competency [14]. This 
allows evolution to readily pivot through problem spaces 
(Fig. 7), using the same general computational tricks to han-
dle navigation in metabolic, physiological, transcriptional, 
morphological, behavioral, and linguistic spaces [86]. Like 
the principal components describing the activity of artificial 

Fig. 7  Scaling of the morphogenetic agent. A The components of a 
complex morphogenetic system can be thought of as cells with mini-
mal computational abilities, for example the homeostatic capacity 
to keep cell-level parameters (e.g., pH) within certain levels. B For 
the collective intelligence of morphogenesis to competently navi-
gate anatomical morphospace, in addition to cell-level physiological 
space, these subunits have to connect into networks that computa-
tionally store much bigger goal states (e.g., rough representations of 
coordinates in anatomical space, or target morphology shapes). It is 
hypothesized here that this occurs via gap junctional dynamics, but 
the details of the scaling of setpoint states are an active area of cur-
rent research [295, 305–310]. Of course, biochemical and biome-
chanical modalities are also very likely to be involved in the scaling 
of competencies from subcellular to multicellular problem spaces. 
C In effect, the scaling enables cellular collectives to enlarge their 
“cognitive light cone”—the spatio-temporal scale of the target states 
they are able to pursue, increasing their memories of the past, abil-
ity to predict future states from past experience, and the spatial extent 
over which they can measure current states [13]. D Current work is 
ongoing on the open problem of linking these cybernetic perspec-
tives to the biophysics of the state space of the electrical circuit of 
a multicellular tissue, and to central ideas in connectionist machine 
learning which show how a network (excitable medium) can store 
large-scale patterns that are robust to perturbation and can be recov-
ered after damage [57, 58, 270]. E The consilience of computer sci-
ence  approaches to cognition (connectionist models of memories in 
networks), dynamical systems views of systems navigating land-
scapes, and developmental bioelectricity provide an emergent uni-
fication of the notions of memory and recall in morphogenesis and 
behavior. Panels in C,D,E by Jeremy Guay of Peregrine Creative. 
Embryo panels in D used with permission from [311]
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neural architectures, these spaces are often not obvious to 
us as external observers. For example, bacteria that can 
take actions such as physical movement, or transcriptional 
changes of enzyme expression, to address dissatisfaction 
with local sugar levels, operate in a hybrid problem space 
with effectors that operate in what we call gene expression 
space and 3D space, respectively.

Successful creatures must operate with a kind of “Begin-
ner’s Mind” with respect to the collective intelligence of 
morphogenesis. There is an interesting parallel here with 
neuroscience, in which behavior is a combination of past 
history and on-the-fly decision-making. Much as each organ-
ism must interpret its physical engrams in real time to select 
actions, morphogenesis is a dynamic process that acts by 
interpreting the genetic material with which it must work. 
For example, Xenobot cells interpret the same Xenopus lae-
vis genome in a way that results in kinematic self-replication 
and other behaviors, while standard frog embryos exhibit 
the more common frog-like interpretation. Like in learning, 
the ideal memory is not a recording of microstates (which 
often cannot be reused in other contexts), but a compressed, 
generative representation of what and how to optimize—sec-
ond-order policies that are usable even when details change.

Morphogenetic problem-solving capacity must be seen at 
a level higher than that of cells. A focus on cellular plasticity 
and cell-cycle checkpoints leads to predictions that animals 
with easy access to undifferentiated cells (e.g., regenera-
tive ones) should be highly prone to cancer; in fact, the true 
situation is the opposite [237]. Animals with robust morpho-
genetic control due to high levels of plasticity are resistant 
to changes of circumstance (injury) at many scales: they 
regenerate after loss of limbs and organs (degradation of 
body-scale information), they suppress cancer readily [238] 
(degradation of tissue-scale information) and they resist 
aging (degradation of cell-level information).

The best examples of this counter-intuitive dynamic are 
planaria, which not only recover their entire bodies from 
even small fragments, but are very cancer resistant and 
apparently ageless. This raises a crucial puzzle for the tra-
ditional view of genomes as specifying form and function. 
Why does this extremely “long-lived” animal (greatly out-
shining animals like humans or elephants, in which long-
term cancer suppression is commonly touted) avoid can-
cer despite consisting of about one-third its cell number 
as stem cells? Moreover, because planaria often reproduce 
by fission, any mutation that does not kill the stem cell is 
propagated into the next generation and expanded, resulting 
in animals that are mixoploid chimeras with an extremely 
messy genome [239]. How does the animal with the messiest 
genome have the best morphological control?

An evolutionary intelligence ratchet

A possible answer to this puzzle merges the above concepts 
of evolution producing versatile problem-solving machinery. 
Of course, the problem-solving competencies are themselves 
produced by genetically encoded hardware, suggesting the 
view of two kinds of genomic information: that which 
directly specifies phenotypes (e.g., sequence of protein 
enzymes, or structural genome) and that which specifies a 
problem-solving competency (second-order computational 
capacities). This in turn provides a potential explanation for 
planaria. In hardwired individuals, in which the genome 
directly specifies various features of the phenotype, the fit-
ness reveals a lot of information about which genomes are 
most adaptive: selection can see the quality of the structural 
genome. However, in individuals in which the morphoge-
netic process has competencies (such as adjusting the posi-
tion of a misplaced mouth, establishing functional vision 
with a tail-eye, or adjusting physiology in light of a stressor 
such as barium), selection has a hard time picking the best 
genomes because some of its successful instances are in fact 
not due to a great structural genome, but to a competency of 
the parts to adjust. Because cells can navigate morphologi-
cal and physiological spaces, fitness carries less information 
about the structural genome.

It has been suggested that when evolution cannot make 
efficient gains by optimizing the hardwired components, 
the remaining targets for optimization are the competency 
mechanisms themselves [240]. This starts a feedback loop, 
because each gain in competency makes it even harder to 
judge the structural genome, which exacerbates the drive 
toward improving competencies—a ratchet for multiscale 
intelligence that can readily be seen in computational models 
of the process [240]. Planaria, salamanders (which regener-
ate, but are not immortal), and mammals all represent dif-
ferent degrees of how far this ratchet has operated in their 
lineages, because other forces oppose it (e.g., complexity 
drain [241]). This phenomenon is familiar for example in 
human evolution, in which case evolutionary pressure for the 
largest muscles has been lifted, because the most success-
ful reproducers are ones with high computational capacity 
which use manipulation (e.g., tools, language, and medicine) 
to increase their reproductive success, making it hard for fit-
ness to select for the ones that are physically the most robust.

This model explains a number of very puzzling observa-
tions, beyond the fact that the messiest genomes (400 + mil-
lion years of somatic inheritance) have the most robust 
anatomies—a striking disconnect between genomic and 
morphological stability. For example, it predicts the con-
firmed fact that there are no known mutant planarian strains 
with abnormal morphologies (the way there are for fruit 
flies, mice, etc.) and explains why the research community 
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has had such a hard time (despite decades of efforts) generat-
ing transgenic planaria. In this lineage, the ratchet has run all 
the way forward, optimizing mechanisms to create a func-
tional body (almost) no matter what the genome looks like: 
all of the effort has gone into polishing a set of algorithms 
that produce a functional anatomy despite expected noise in 
the components, which then makes it very difficult to create 
change by targeting the genetic level. In fact, the only known 
permanent strains of planaria with an abnormal anatomy are 
two-headed [195] and destabilized (random 1 vs. 2 head) 
forms [193], which were not made by genetic change but 
by manipulating the physiologically implemented software 
that stores pattern memories and guides planarian tissues in 
their navigation of physiological and morphological problem 
spaces. This illustrates the profound link between the course 
of evolution and the dynamically changing competencies 
of its substrate material [37]. In the next section, specific 
implications for the evolutionary process itself are discussed.

Implications of multiscale competency 
for the evolutionary process

“It is not the strongest of the species that survives, nor 
the most intelligent that survives. It is the one that is 
the most adaptable to change.”
— Charles Darwin
The multiscale competency architecture (MCA) was fore-

shadowed in the notion of semiautonomous processes and 
dissociability by Needham, Gould, and others [242–245], 
but it has not heretofore been sufficiently appreciated. The 
ubiquitous embedded agency of evolution’s substrate means 
that the layer between the genotype and selection can make 
up for a wide range of errors and novel circumstances. In 
some cases, the correct species-specific target morphology 
is recreated (e.g., scrambled embryonic frog faces), while in 
other cases a different functional morphotype emerges (e.g., 
Xenobots). The same is true in physiological and transcrip-
tional cases (e.g., planarian barium adaptation). These are 
not merely environment-induced differential developmental 
outcomes, but the ability to reach specific outcomes despite 
internal or external perturbations. Beyond the advantages 
of encapsulated modules and their triggers, the problem-
solving capacity of morphogenesis enables the larger system 
to delegate tasks and rely on them being completed in a wide 
range of circumstances that do not have to be anticipated and 
micromanaged. The following are ways in which the MCA 
potentiates, accelerates, and shapes evolutionary processes 
(Fig. 8).

1. By providing an agential substrate, MCA speeds the 
evolutionary search for better solutions in several ways. 
Active, modular problem-solving capacity enables the 
following properties for the evolutionary process:
o Generalization. By increasing the number of geno-

types that all map to the same functional phenotype, 
the partially autonomous generative layer helps evo-
lution generalize [35, 50]. When functionality and 
thus fitness are not tied to a single molecular imple-
mentation, significant plasticity and robustness arise 
via exploration of different ways to achieve the same 
goal, generating alternatives which might prove to 
have other advantages. For example, the instructive 
property of resting potential  (Vmem), distinct from 
the specific ion levels that underlie it, means that 
a bioelectrically controlled morphogenetic function 
can continue unaffected, while evolution experi-
ments with other consequences of swapping out 
different channel proteins in that circuit.

p Reliability. Modular agential systems can persist and 
be continuously improved and built upon, because 
the ability of the parts to achieve specific design 
specs enables the other parts to functionally trust 
that they will accomplish their task even when 
changes occur. This makes it practical to invest 
energy in complex regulatory systems. MCA facili-
tates cooperation (which is not guaranteed by mere 
genetic relatedness [141]) between components and 
across levels of organization by encapsulating com-
plex behaviors in a simple module with a specific 
goal. Systems that have a clear, reliable goal state 
that they can be depended upon to pursue are easier 
to cooperate with, and thus present a lower barrier 
for investment in cooperation.

q A more tractable search space. By smoothing the 
fitness landscape, MCA makes the search process 
much more efficient, improving evolvability by 
enabling the search to overcome local maxima. By 
reducing phenotypic differences between different 
genotypes, MCA enables selection to explore the 
consequences of mutations which would otherwise 
be maladaptive. For example, a mutation which 
displaces the mouth, but has some other beneficial 
impact elsewhere, will not result in a dead embryo 
(and thus failure to exploit the other consequences 
of that mutation) because the mouth will self-correct 
[178].

r Cryptic variance. MCA makes many mutations 
neutral that would be deleterious in a direct geno-
type ĺ phenotype architecture. Such mutations 
whose effects are mitigated by developmental regu-
lation are not weeded out; instead, they persist, gen-
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erating over time a rich pool of diversity that may 
be phenotypically dormant, but can be exploited in 
future. Cryptic variation [74, 246] has been pro-
posed to underlie adaptation to previously unen-
countered conditions or environments.

s Functional intermediates. Goal-directedness (in 
the cybernetic sense) of developmental modules 
helps resolve the problem of useful intermediates, 
because the autonomous problem-solving capacity 

of the parts pushes partial solutions toward an attrac-
tor. In On the Origin of Species, Darwin wrote, "If 
it could be demonstrated that any complex organ 
existed which could not possibly have been formed 
by numerous, successive, slight modifications, my 
theory would absolutely break down." Many sce-
narios which, in a flat architecture, would result in 
an in-between state with low fitness, instead, end 
up in a useful attractor state because of the “do until 
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condition X is met” character of homeostatic and 
homeodynamic loops.

2. Implications for the inverse problem. An intervening 
developmental control layer can help mitigate the non-
linear relationship between genotype and phenotype 
at the micro level by providing a more linear relation-
ship between control signals exerted at higher levels of 
organization and phenotypes.
o More linear controls. It is likely that a layer of 

cybernetic competency makes the relationship 
between genotype and phenotype more linear [20, 
247]—addressing the difficult inverse problem of 
selecting which genes must mutate to reach a sys-
tem-level outcome. This potentially empowers epi-
genetic mechanisms that go beyond a completely 
blind search of the genetic space. By encapsulating 
the chaotic (in the mathematical sense) relationships 
between changing local rules and emergent out-
comes into modules with distinct goals, the system 

becomes easier to control via a combination of top-
down encoded goal states and bottom-up emergence.

  As described above, morphogenetic goal state 
encodings (such as bioelectric prepatterns) can be 
re-written despite a wild-type genome. Keeping 
such goal state encodings functionally orthogonal 
(independently modifiable) from the machine that 
executes them is a powerful architecture exploited 
by computer science. This separation, complement-
ing feed-forward emergence, progressively mini-
mizes the inverse problem at each pair of layers, 
allowing much more efficient functional architec-
tures.

p Facilitating credit assignment between changes and 
positive outcomes. Evolution does not have to wait 
until a solution is found that improves one prop-
erty while not impairing others—it can exploit the 
much easier route of testing out properties, while the 
error-correcting competencies of underlying mod-
ules mitigate the fact that most genes have many 
different roles [248]. MCA helps handle the fact 
that it is very hard for any optimization process to 
make progress when each change has many different 
consequences, by reducing the need for determining 
individual contributions for each control signal.

3. MCA’s modularity confers both robustness and hack-
ability.
o More control at the higher levels, less at the lower. 

The advantages of robustness (making some com-
ponents controllable by other components) result in 
encapsulation of cybernetic modules which are more 
controllable in specific ways (goal rewriting, behav-
ior shaping), but less controllable in their details 
(they resist noise and intervention, and sometimes 
have novel unpredictable behaviors—a hallmark of 
the primitive roots of agency). It may be far eas-
ier for evolution to exploit complex outcomes by 
making changes in the setpoint information (e.g., 
by manipulating ion channel structure) than by try-
ing to micromanage local rules that are many steps 
away from system-level outcomes. Future work will 
measure the relative improvement in edit distance 
[249] between highly fit organisms in bottom-up vs. 
behavior-shaping evolutionary approaches.

p Evolutionary pressure to detect ‘hijacking’. How-
ever, the increased controllability, and thus repro-
grammability, of components is also a potential tar-
get for exploitation by parasites and various cheaters 
[250], as it makes it that much easier to control com-
plex outcomes in host or conspecific behavior. This 
in turn sets up an evolutionary pressure for systems 

Fig. 8  Summary of the evolutionary perspective on morphological 
competency. A It is well appreciated that evolutionary dynamics have 
scaled intelligence, from the primitive capacities of microbes to the 
metacognition of modern humans. However, it is suggested here that 
the process is symmetrical: the intelligence of the components (i.e., 
problem-solving capacity) potentiates the evolutionary process, form-
ing a ratchet that enhances this capacity while it makes it harder for 
selection to see the structural genome [240]. B It is suggested here 
that the multiscale competency architecture (the cybernetic nature of 
each layer) enables evolution to pivot across problem spaces, using 
the same navigation policies to solve problems in metabolic, physi-
ological, transcriptional, morphogenetic, and 3D spaces (the latter 
being the traditional space of “behavior”). For example, the (bio-
electric) computations of neural networks that control muscles to 
move the body through 3D space emerged from much earlier usage 
of those same mechanisms and algorithms to control other cell types 
[145] to navigate the configuration state of the body through anatomi-
cal morphospace despite novel circumstances (examples in Figs. 5,6) 
[86]. Blue arrows symbolize how evolution scaled up each type of 
control into a new, larger space. The intelligence-focused lens on 
the co-developmental process suggests that the competency of the 
layer between genotype and phenotype (developmental physiology) 
greatly smooths the rugged (C) evolutionary landscape, resulting (D) 
in a faster search and exploration for novel capabilities. The ability 
of cellular and tissue-level agents to accomplish their tasks in their 
respective problem spaces despite unpredictable changes enables 
many mutations that would otherwise have been deleterious to be 
neutral, as the system adjusts and enables evolution to explore other, 
potentially positive effects of pleiotropic mutations. Mutation is thus 
just one of many internal and external perturbations that deviate the 
body from a target morphology—a ubiquitous stressor that needs to 
be dealt with on developmental and evolutionary timescales. On this 
view, regenerative capacity is not a novel solution to external damage, 
but an ancient, ubiquitous aspect of homeostasis that enables develop-
mental progression, regulative morphogenesis, and also efficient evo-
lutionary search. Panels B, C, D used with permission from Jeremy 
Guay of Peregrine Creative.

◂



 M. Levin 

1 3

  142  Page 22 of 33

to model their own functionality (causality) to detect 
when their control circuits are being changed inter-
nally or externally. This reinforces the boundaries 
between self and world (individuation) and may 
have many consequences for cognitive capacities in 
more advanced life forms.

4. MCA facilitates evolutionary creativity.
o Pivots to novel problem spaces. Another way evolu-

tion can exploit the benefits of the MCA is by chang-
ing the measurement component of the homeostatic 
loops, which generates novel functions (and thus 
jumps across the fitness landscape) by providing 
new perspectives—new ways one component (or the 
larger system) can control and exploit on an existing 
mechanism—polycomputation [42]. More broadly, 
useful computational functions, such as associative 
memory, can be derived from a gene-regulatory net-
work without changing the structure of the network 
(and thus without any possibility of adversely affect-
ing any dependents). A mechanism that interprets its 
outcomes in a particular way (maps specific nodes 
to the functional elements in an associative condi-
tioning paradigm for example, [88, 89]) is readily 
evolved and modified, and provides a way for evo-
lution to squeeze additional benefits from existing 
components without the negative consequences for 
other internal observers (subsystems), thus keeping 
prior gains. Future work must examine the role of 
perception (in the active inference sense) and poly-
computing in potentiating evolutionary advances, to 
see how much of the effort of evolutionary optimiza-
tion is spent tweaking the measurement, setpoint, or 
actuation machinery of homeostatic loops.

p The competency ratchet described above [240] and 
the facilitation of complex high-level control loops 
by the modularity of the test–operate–exit loops 
of homeostatic mechanisms go beyond simple 
problem-solving. They also help evolution address 
novel opportunities—open-ended [251] exploration 
of new spaces and selection of novel problems to 
solve, not just better ways to solve the same prob-
lem. One example of this is the ability of planaria to 
find transcriptional paths to resolve an entirely novel 
physiological stressor (barium) [90]. Another is the 
ability of Xenobots made of wild-type Xenopus lae-
vis cells to perform kinematic replication (which, to 
our knowledge, no other organism does), suggesting 
that more focus needs to be placed on how allosta-
sis, homeorhesis [252], and autonomization [253] 
not only guide navigation in an established problem 
space using developmental motifs (a.k.a., behavio-

ral modules in anatomical morphospace), but also 
enable pivoting across novel spaces—a hallmark of 
early agency. Fundamentally, problem spaces and 
goals exist from the perspective of an observer (a 
subsystem exploiting a perspective for adaptive 
advantage). Thus, it is essential to develop an under-
standing of the dynamics which enable, scale up, 
and transform the proto-cognitive/computational 
boundaries of evolved and designed agents.

Conclusion

"A smooth sea never made a skilled sailor"
— Franklin D. Roosevelt
It is no coincidence that Alan Turing was interested in 

both the question of intelligence in radically unconventional 
embodiments [254], and the question of self-organization 
of biological form during embryogenesis [255]. In a deep 
sense, they are the same question, seeking to understand 
the ability of matter to support reprogrammable, software-
level (physiological) information processing that provides 
context-sensitive behavior for changing inputs. Turing’s 
modeling of self-organization in a chemical medium dove-
tails with the fact that an egg genome does not specify one 
embryo in a hardwired manner. Cell sheets that express 
genetically provided hardware are capable of giving rise 
to 0, 1, or several autopoietic systems that set their own 
boundaries in the excitable medium of the early blastoderm 
[256]—the most basic example of the flexibility of the prod-
uct of the evolutionary process.

Biological systems exhibit cybernetic competencies in 
diverse problem spaces, which scale up from the most mini-
mal behaviors of molecular components [257–260] via a 
process of evolutionary enrichment for computational flexi-
bility and controllability. The fact that the substrate on which 
evolution works is an agential material [37] means that evo-
lution is searching not only the space of micro-level pheno-
typic outcomes, but also the smoother, lower-dimensional 
space of behavior-shaping signals for control of modules 
that encapsulate complexity behind simple interfaces like 
the homeostatic control loop. This also allows evolution to 
bridge the sim-to-real gap—a problem that plagues roboti-
cists and engineers, in which the environment is constantly 
surprising no matter how rich the prior training set was [261, 
262]. In overloading [42] the same genetic hardware with 
multiple interpretations [125, 126, 197], the physiologi-
cal machinery of chemical and cellular networks ensures 
that evolution does not over-train on prior data, but com-
presses and generalizes. Evolution crosses the gap between 
prior experience and adaptive novelty [261] by not relying 
too much on a lineage’s prior experience (which, like our 
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simulations, often fail to recapitulate everything we need to 
know in the future), but rather by exploiting problem-solving 
competencies of modules at different scales.

The evolutionary process seems to have been enriched 
for computational capacity, starting at the level of molecu-
lar pathways [88, 89, 263]. It is likely that molecular and 
tissue-level intelligence is favored for the same reason that 
nervous systems have been so successful: they enable con-
text-sensitive computation that cannot be pre-specified in 
the protein-level encoding of the DNA. Biology has many 
examples of remarkable compression of complex events into 
molecular representations [264–267], and the converse—
cross-scale decoding: these need to be better understood. 
In fact, even living systems that do not seem to offer much 
plasticity and whose MCA capacities seem very low (e.g., 
C. elegans) cannot be guaranteed to be as hardwired as they 
first appear. It is an essential aspect of intelligence that its 
detection (or lack thereof) says as much about the observer 
as it does about the system itself [14, 86]; moreover, the 
vast bulk of research in development and even physiology 
in model systems has not specifically probed for problem-
solving in diverse spaces. It is entirely possible that more 
sophisticated attempts to uncover such dynamics in novel 
spaces will yield surprises in model systems that are not 
known for their MCA capabilities.

How do the molecular events brought on by injecting a 
frog’s egg with an odorant molecule become expanded into 
a nervous system architecture which controls muscles to 
behaviorally seek out that odorant as an adult frog [268]? 
All of the above suggests that MCA enables evolution to 
search a simpler, smoother, more powerful space—the space 
of signals and rewards—rather than the high-dimensional 
space of individual local hardware states. Examples that 
support this extend all the way down to the cybernetic prop-
erties of chemical pathways, such as learning and habitua-
tion [87–89, 269]. By shaping signals that are interpreted by 
modules with various degrees of memory and decision-mak-
ing ability, both evolution and engineers can take advantage 
of the MCA [270]. The ability of biology to move salient 
information across scales, problem spaces, and mechanistic 
implementations is likely key to the efficiency and power 
of evolution.

Homeostatic control cycles may facilitate such scaling of 
complexity and intelligence because of their functional and 
semantic modularity: for example, a setpoint can easily be 
changed from a metabolic (cell-level) metric to a measure 
of planar polarity alignment (tissue level), while keeping 
everything else the same. The ability to independently swap 
out the measurements, comparison function, and setpoints of 
a homeostatic loop means that a very wide variety of high-
level strategies can be readily tested out by evolution. This 
is the same advantage engineers and end users reap from 
homeostats: overall function can be rapidly changed without 

needing many alterations of the underlying hardware by for 
example rewriting the setpoint (such as when the genetically 
wild-type planarian’s bioelectric pattern memory is briefly 
re-set to a two-head pattern by a simple ion channel-target-
ing stimulus, resulting in a permanent line of worms which 
reliably build to the new setpoint pattern when fissioning or 
amputated [194]).

The modulation of the evolutionary process by behavioral 
intelligence in animals (and science-capable humans) was 
long predated by a similar process taking place outside the 
brain: the diverse intelligence of morphogenetic processes 
operating in anatomical space. The fact that evolution not 
only finds solutions to specific problems, but also creates 
somewhat generic problem-solving machines, with multiple 
diverse (simultaneously existing [42]) capabilities, has many 
implications for the evolutionary process itself. It facilitates 
credit assignment for the evolutionary search process, ena-
bles exploration and novelty [4, 271], and hugely accelerates 
the process of increasing complexity. This feedback between 
evolutionary scaling of intelligence and the acceleration 
of the discovery of novelty by evolution forms a powerful 
ratchet [240], which is compatible with the emerging picture 
of a continuum of basal cognition across the tree of life [14].

Future directions for research

This perspective suggests a unifying lens for aspects of evo-
lutionary developmental biology and engineering [272], 
focused on the idea of hacking the agential interfaces of 
components instead of micro-managing design. Like para-
sites, body tissues, and evolution itself, bioengineers and 
roboticists have the opportunity to develop a science of 
control by exploiting competencies as affordances, appli-
cable equally to the direct products of evolution and to the 
second-order creative process in which evolved humans par-
take. Future appliances in this field will be potentiated by 
universal APIs that go beyond object-oriented programming 
to goal-oriented programming to exploit biological archi-
tectures and offer similar advantages to designed digital 
systems (as well as hybrid platforms). A number of future 
research programs can now be pursued.

With respect to theory, much needs to be done to con-
nect these ideas to the body of work on evolutionary units 
of selection [273, 274], and on natural induction [47]. Tools 
need to be developed to identify virtual governors [57, 275] 
as evolutionary forces and to quantify what spaces evolu-
tionary processes are really searching [86]. Computational 
modeling and synthetic biological systems are now primed 
to address the dynamics of cognitive scaling and the impacts 
thereof on the competency of the search process itself, via 
computational models that explicitly blend low-level com-
petencies with an evolutionary cycle [240, 276]. Some of the 
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biggest questions concern the latent space of homeodynamic 
goals at different scales, and where these setpoints come 
from, when not directly specified by genome or environment 
[271, 272, 277–279]. It is likely that generic principles of 
inherent laws of biomechanics, bioelectrics, and information 
processing [62–64, 132, 280–284] will be key parts of the 
roadmap to flesh out the bi-directional relationship between 
multiscale intelligence and evolution.

It should be noted that the evolutionary consequences 
of agential matter were here explored from the perspective 
of an addition to what is otherwise treated as a fully main-
stream picture of the evolutionary process itself. However, 
in future work, this perspective should be merged with cur-
rently developing alternative views of evolution, to deter-
mine what implications it has for those frameworks. Other 
non-traditional [28, 60, 285, 286] evolutionary dynam-
ics could perhaps also be greatly facilitated by the abil-
ity of cells to solve novel problems using transcriptional 
responses. One example is the ready fit of these ideas into 
the emerging framework of natural induction [35, 47], which 
seeks invariants between the evolutionary process and that of 
learning broadly conceived. Another has to do with so-called 
Lamarckian effects [28, 60, 286]. For example, consider the 
case of regulating the small number of relevant genes to 
resolve a novel stressor, as in the barium-exposed planaria 
[90]. This provides clear evidence that cells can sometimes 
solve the hardest part of reversing the central dogma—the 
credit assignment needed to know which genes to edit to 
enrich for specific outcomes. Once the relevant transcripts 
are identified by computational processes at the transcrip-
tional level, making genomic edits at those loci could in 
principle be done by straightforward, familiar mechanisms 
(akin to reverse transcriptase, CRISPR, trans-generational 
chromatin modifications, etc.). Whether this in fact occurs 
in vivo represents an exciting future direction for experi-
mental research.

Impacts beyond evolutionary biology

Specific impacts of the above ideas will go far beyond evolu-
tionary biology, for example, to applications in regenerative 
medicine which will increasingly exploit the decision-mak-
ing capabilities of cells and tissues, in addition to traditional 
bottom-up molecular rewiring [160]. Beyond the life sci-
ences, engineering is now heavily reliant on evolutionary 
approaches to design [287–289], and robust future robotics 
and AI architectures must mimic the multiscale competency 
architecture to achieve (and surpass) the functionality of 
natural systems. Importantly, connectionist AI architectures 
are not only the beneficiaries of these ideas, but are also a 
key developing toolkit for the emerging field of basal cogni-
tion because of the “impedance match” needed between a 

phenomenon and the tools used to study it. Physicists use 
low-agency, mechanical tools to observe the natural world, 
and inevitably arrive at low-agency mechanistic models. 
Taking full advantage of virtual governors, proto-cognitive 
modules, and other aspects of the software of life requires 
tools that recognize and learn to hack these capacities. 
Agency cannot be directly observed with a microscope, but 
brains, evolutionary processes, and emerging machine learn-
ing tools are primed to detect and exploit it via agential mod-
els of control because they themselves are higher-agency 
systems.

As foreseen by many workers since the beginnings of 
thought on evolution, intelligence is key to evolutionary 
change. Recent consilience of a range of disciplines are giv-
ing rise to the field of diverse intelligence, which recognizes 
a spectrum of problem-solving and creative competencies 
in unconventional, basal media that goes beyond the old 
dichotomy of “dumb mechanical machine vs. high-level true 
intelligence”. This finally makes it possible to incorporate a 
naturalistic, non-reductive, empirically useful conception of 
intelligence into modern theories of evolutionary change. It 
also naturally leads to hypotheses that whole lineages, and 
perhaps even the evolutionary process itself, can be viewed 
as proto-cognitive, cybernetic agents, by characterizing the 
competencies of the search dynamics using the language of 
cognitive and behavioral science such as active inference 
and Hebbian learning [35, 48, 290–292]. What is becoming 
increasingly clear is that intelligence is not some latecomer 
that arrives with the appearance of big brains—it is baked 
in at the very beginning [293, 294], present at multiple 
scales of the biological substrate of evolution, and continu-
ously shapes its course in a fluid dance that potentiates all 
participants.
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